22 research outputs found

    Effective Large Scale Computing Software for Parallel Mesh Generation

    Get PDF
    Scientists commonly turn to supercomputers or Clusters of Workstations with hundreds (even thousands) of nodes to generate meshes for large-scale simulations. Parallel mesh generation software is then used to decompose the original mesh generation problem into smaller sub-problems that can be solved (meshed) in parallel. The size of the final mesh is limited by the amount of aggregate memory of the parallel machine. Also, requesting many compute nodes on a shared computing resource may result in a long waiting, far surpassing the time it takes to solve the problem.;These two problems (i.e., insufficient memory when computing on a small number of nodes, and long waiting times when using many nodes from a shared computing resource) can be addressed by using out-of-core algorithms. These are algorithms that keep most of the dataset out-of-core (i.e., outside of memory, on disk) and load only a portion in-core (i.e., into memory) at a time.;We explored two approaches to out-of-core computing. First, we presented a traditional approach, which is to modify the existing in-core algorithms to enable out-of-core computing. While we achieved good performance with this approach the task is complex and labor intensive. An alternative approach, we presented a runtime system designed to support out-of-core applications. It requires little modification of the existing in-core application code and still produces acceptable results. Evaluation of the runtime system showed little performance degradation while simplifying and shortening the development cycle of out-of-core applications. The overhead from using the runtime system for small problem sizes is between 12% and 41% while the overlap of computation, communication and disk I/O is above 50% and as high as 61% for large problems.;The main contribution of our work is the ability to utilize computing resources more effectively. The user has a choice of either solving larger problems, that otherwise would not be possible, or solving problems of the same size but using fewer computing nodes, thus reducing the waiting time on shared clusters and supercomputers. We demonstrated that the latter could potentially lead to substantially shorter wall-clock time

    CASE Tools for IT-System Integration

    Get PDF
    Proceedings of 14th International Multi-Conference on on Advanced Computer Systems ACS-AISBIS 2007, Szczecin, Poland, 17-19 Oct. 2007The article deals with the compare of standard and new suggested information system (IS) development logical stages. Standard and suggested stages are integrated, new CASE-tool is developed for high-quality IS development in the shortest terms support. The work includes some new and fundamental approaches and suggests specific concepts to IS development

    Advancing Intra-operative Precision: Dynamic Data-Driven Non-Rigid Registration for Enhanced Brain Tumor Resection in Image-Guided Neurosurgery

    Full text link
    During neurosurgery, medical images of the brain are used to locate tumors and critical structures, but brain tissue shifts make pre-operative images unreliable for accurate removal of tumors. Intra-operative imaging can track these deformations but is not a substitute for pre-operative data. To address this, we use Dynamic Data-Driven Non-Rigid Registration (NRR), a complex and time-consuming image processing operation that adjusts the pre-operative image data to account for intra-operative brain shift. Our review explores a specific NRR method for registering brain MRI during image-guided neurosurgery and examines various strategies for improving the accuracy and speed of the NRR method. We demonstrate that our implementation enables NRR results to be delivered within clinical time constraints while leveraging Distributed Computing and Machine Learning to enhance registration accuracy by identifying optimal parameters for the NRR method. Additionally, we highlight challenges associated with its use in the operating room

    Comparison of Physics-Based Deformable Registration Methods for Image-Guided Neurosurgery

    Get PDF
    This paper compares three finite element-based methods used in a physics-based non-rigid registration approach and reports on the progress made over the last 15 years. Large brain shifts caused by brain tumor removal affect registration accuracy by creating point and element outliers. A combination of approximation- and geometry-based point and element outlier rejection improves the rigid registration error by 2.5β€…mm and meets the real-time constraints (4β€…min). In addition, the paper raises several questions and presents two open problems for the robust estimation and improvement of registration error in the presence of outliers due to sparse, noisy, and incomplete data. It concludes with preliminary results on leveraging Quantum Computing, a promising new technology for computationally intensive problems like Feature Detection and Block Matching in addition to finite element solver; all three account for 75% of computing time in deformable registration

    Toward Real-Time Image Guided Neurosurgery Using Distributed and Grid Computing Abstract

    No full text
    Neurosurgical resection is a therapeutic intervention in the treatment of brain tumors. Precision of the resection can be improved by utilizing Magnetic Resonance Imaging (MRI) as an aid in decision making during Image Guided Neurosurgery (IGNS). Image registration adjusts pre-operative data according to intra-operative tissue deformation. Some of the approaches increase the registration accuracy by tracking image landmarks through the whole brain volume. High computational cost used to render these techniques inappropriate for clinical applications. In this paper we present a parallel implementation of a state of the art registration method, and a number of needed incremental improvements. Overall, we reduced the response time for registration of an average dataset from about an hour and for some cases more than an hour to less than seven minutes, which is within the time constraints imposed by neurosurgeons. For the first time in clinical practice we demonstrated, that with the help of distributed computing non-rigid MRI registration based on volume tracking can be computed intra-operatively

    S.K.: Toward real-time image guided neurosurgery using distributed and Grid computing

    No full text
    Neurosurgical resection is a therapeutic intervention in the treatment of brain tumors. Precision of the resection can be improved by utilizing Magnetic Resonance Imaging (MRI) as an aid in decision making during Image Guided Neurosurgery (IGNS). Image registration adjusts pre-operative data according to intra-operative tissue deformation. Some of the approaches increase the registration accuracy by tracking image landmarks through the whole brain volume. High computational cost used to render these techniques inappropriate for clinical applications. In this paper we present a parallel implementation of a state of the art registration method, and a number of needed incremental improvements. Overall, we reduced the response time for registration of an average dataset from about an hour and for some cases more than an hour to less than seven minutes, which is within the time constraints imposed by neurosurgeons. For the first time in clinical practice we demonstrated, that with the help of distributed computing non-rigid MRI registration based on volume tracking can be computed intra-operatively
    corecore